Uniqueness for discontinuous O.D.E. and conservation laws
نویسندگان
چکیده
Consider a scalar O.D.E. of the form ẋ = f(t, x), where f is possibly discontinuous w.r.t. both variables t, x. Under suitable assumptions, we prove that the corresponding Cauchy problem admits a unique solution, which depends Hölder continuously on the initial data. Our result applies in particular to the case where f can be written in the form f(t, x) . = g(u(t, x)), for some function g and some solution u of a scalar conservation law, say ut +F (u)x = 0. In turn, this yields the uniqueness and continuous dependence of solutions to a class of 2× 2 strictly hyperbolic systems, with initial data in L.
منابع مشابه
Conservation laws with discontinuous flux
We consider an hyperbolic conservation law with discontinuous flux. Such partial differential equation arises in different applicative problems, in particular we are motivated by a model of traffic flow. We provide a new formulation in terms of Riemann Solvers. Moreover, we determine the class of Riemann Solvers which provide existence and uniqueness of the corresponding weak entropic solutions...
متن کاملLarge-time Behavior of Entropy Solutions of Conservation Laws
We are concerned with the large-time behavior of discontinuous entropy solutions for hyperbolic systems of conservation laws. We present two analytical approaches and explore their applications to the asymptotic problems for discontinuous entropy solutions. These approaches allow the solutions of arbitrarily large oscillation without apriori assumption on the ways from which the solutions come....
متن کاملUniqueness via the Adjoint Problem for Systems of Conservation Laws
We prove a result of uniqueness of the entropy weak solution to the Cauchy problem for a class of nonlinear hyperbolic systems of conservation laws, that includes in particular the p-system of isentropic gas dynamics. Our result concerns weak solutions satisfying the, as we call it, Wave Entropy Condition or WEC, for short, introduced in this paper. The main feature of this condition is that it...
متن کاملGodunov-Type Methods for Conservation Laws with a Flux Function Discontinuous in Space
Abstract. Scalar conservation laws with a flux function discontinuous in space are approximated using a Godunov-type method for which a convergence theorem is proved. The case where the flux functions at the interface intersect is emphasized. A very simple formula is given for the interface flux. A numerical comparison between the Godunov numerical flux and the upstream mobility flux is present...
متن کاملHyperbolic Conservation Laws with Discontinuous Fluxes and Hydrodynamic Limit for Particle Systems
We study the following class of scalar hyperbolic conservation laws with discontinuous fluxes: ∂tρ + ∂xF (x, ρ) = 0. (0.1) The main feature of such a conservation law is the discontinuity of the flux function in the space variable x. Kruzkov’s approach for the L1-contraction does not apply since it requires the Lipschitz continuity of the flux function; and entropy solutions even for the Rieman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997